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Abstract

A recent paper in Science1 discussed an experiment that produced a collection of
particles with kinetic energy corresponding to a negative absolute temperature. What
does that even mean? We’ll cover an introduction to statistical mechanical definitions
of concepts like entropy and temperature as a way to develop an understanding of what
it means for a system to have a negative absolute temperature.

Questions to answer:

1. What is thermodynamics?

2. What is statistical mechanics?

3. What is a “state”?

4. What is entropy?

5. What is temperature?

6. So, how can temperature be negative?

7. Can you make a negative temperature in real life?

1http://arxiv.org/abs/1211.0545
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1 What is thermodynamics?

You’ve probably heard of thermodynamics before. It’s the physics of how heat, energy, work,
and temperature of systems behave. Originally, it was developed by engineers who wanted to
learn how to make more efficient steam engines. Over the course of the Nineteenth Century,
physicists developed the Four Laws of Thermodynamics:

Zeroth Law
If two systems are both in thermal equilibrium with a third system then they are in
thermal equilibrium with each other.

This gives us a meaning for “temperature”: any objects at the same temperature can
be in contact without one getting hotter and the other colder.

First Law
The energy of the universe is conserved. Energy flows in and out of a system as heat
and work.

This means that perpetual motion machines that supply more energy than they con-
sume are impossible: the energy flows into and out of a system have to be equal once
you consider all forms of work and heat.

Second Law
An isolated system, if not already in its state of thermodynamic equilibrium, sponta-
neously evolves towards it.

This gives us a concept of “entropy”. An isolated system always gets closer to equilib-
rium; the closer it is to equilibrium, the higher its entropy.

Third Law
The entropy of a system approaches a constant minimum value as the temperature
approaches zero.

This gives us a meaning for the idea of “absolute zero” and “absolute temperature”—
Kelvin as opposed to Fahrenheit or Celsius. When the temperature of a system is
lowered far enough, it reaches a state where it is as far from equilibrium as it can be,
absolute zero.

These laws weren’t things that they had directly proven to be true. Instead, they were
experimental discoveries that held true in many different sorts of experiments. By using
them as axioms, physicists were able to derive many other rules about the behavior of heat,
energy, work, and temperature.
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2 What is statistical mechanics?

The laws of thermodynamics describe the properties of macroscopic objects as though they
are single entities: the temperature of a kettle of water, the work done by a quantity of
expanding steam, and so on. However, everyday materials are made of huge numbers of
microscopic particles—atoms and molecules—that can be studied individually.

Just as the macroscopic chemical properties of materials can be understood in terms of
the microscopic properties of the atoms and molecules that they’re made of, the laws of
thermodynamics can be derived from the microscopic behavior of the atoms and particles in
a system. Statistical mechanics is, in essence, the study of how the laws of thermodynamics
emerge from the behavior of individual atoms and molecules.

3 What is a “state”?

When physicists talk about the “state” of a system, they mean a complete description of all
its properties. Two systems are in the same state if they’re identical, such that calculations
done about one will describe the other equally well.

There are two types of states that we care about in statistical mechanics:

Macrostate
The macrostate of a system is the collection of properties that you could observe
directly without knowing anything about its atomic structure. For example, its tem-
perature, its pressure, and the amount of heat it contains or work it can do. This is
the only sort of state that thermodynamics considers.

Microstate
The microstate of a system is a full description of the properties of each atom or
molecule in it. A simple example might be 6N numbers for a set of N helium atoms:
three position coordinates and three components of the velocity vector of each atom.

The microstate description of a system is much more detailed than the macrostate
description, and there will generally be many microstates that correspond to the same
macrostate.

The fundamental assumption of statistical mechanics—called “equipartition”—is that a sys-
tem in a given macrostate is equally likely to be in any of the microstates that correspond
to that macrostate. Such microstates are described as “accessible”.
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4 What is entropy?

As a simple model, consider a system containing one mole of helium gas with a total internal
energy of one kilojoule. In this case, we can describe the number of accessible microstates
as: g(N,U) where g is the number of states and it depends on the number of particles, N
and the total internal energy of the system, U .

Suppose, now, we have two systems in contact: system 1, with an internal energy of U1,
and system 2, with an internal energy of U2. If particles cannot travel between the systems,
but energy can, then the macrostate is fully described by two numbers, U , and U1, since
conservation of energy tells us that U2 = U − U1.

Since the arrangement of particles in one system doesn’t affect the arrangement of particles
in the other—except by restricting the energy available—the total number of accessible
microstates for a macrostate defined by U without specifying U1 is:

g(U) =
∑
U1

g1(U1)× g2(U − U1)

Our assumption of equipartition tells us that the most probable macrostate—defined in
terms of U and U1—will be the one that contributes the largest term to this series. We can
call this macrostate “thermal equilibrium”, since probability tells us that the system will
naturally return to it if given enough time.

Since this macrostate is a maximum of g in terms of U1, an infinitesimal change in U1—an
infinitesimal interchange in energy—results in no change in the number of states. Thus:

dg =

(
∂g1
∂U1

)
g2dU1 +

(
∂g2
∂U2

)
g1dU2 = 0

Since dU1 = −dU2, divide both sides by g1g2dU1 to get a condition for thermal equilib-
rium:

1

g1

(
∂g1
∂U1

)
=

1

g2

(
∂g2
∂U2

)
We recognize the derivative of a natural log here and rewrite this as

(
∂σ1
∂U1

)
=

(
∂σ2
∂U2

)
where σ ≡ ln g is called the “entropy” of the system. This definition of entropy makes
intuitive sense, since it always increases with the number of microstates available for a given
macrostate. We also see—consistent with thermodynamics—that the entropy of the system
will be conserved if and only if the system is in thermal equilibrium.
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5 What is temperature?

We have just derived a definition of thermal equilibrium in terms the microstates of a sys-
tem. However, thermodynamics tells us another equality that must be satisfied at thermal
equilibrium: T1 = T2. This immediately gives us a statistical mechanics definition of tem-
perature:

β =

(
∂σ

∂U

)
The units of this definition of temperature, if U is in J, are J−1, since σ is the log of a pure
number. This relates to our everyday definition of temperature in Kelvin, T , as

β ≡ 1

kBT

where kB is Boltzmann’s constant, a fundamental physical constant.

This definition gives us an understanding of what temperature physically means. β is the
rate of change of entropy with respect to energy, and T is inversely proportional to β. So,
a system with a low value of T—a high value of β—will have a very big increase in entropy
for a small increase in energy. As T increases—and β decreases—the entropy gain from a
given increase in energy will get smaller and smaller.

With a little thought, we can see that this makes sense. If we have two systems at temper-
atures T1 and T2, with T2 > T1, we expect that the system at T2 should lose energy to the
system at T1 until they reach the same temperature.

Conservation of energy tells us that the T1 system gains the same amount of energy that the
T2 system loses. Since the system at T2 has a higher value of T , it has a smaller value of
∂σ
∂U

, and thus the entropy of the T2 system decreases at a lower rate than the entropy of the
T1 system increases. Thus, the combined entropy increases, as we expect for spontaneous
processes.

Once the systems are the same temperature, T1 = T2, so any energy transfer between them
conserves entropy as well as energy, and thus energy flow isn’t favored in one direction: the
system is in equilibrium.
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6 So, how can temperature be negative?

Our definition of temperature as

1

kBT
≡ β =

(
∂σ

∂U

)
indicates what would be necessary for temperature to be negative: increasing the energy of
the system would have to decrease entropy. In other words, supplying more energy would
have have to decrease the number of accessible microstates.

For the sorts of temperature we’re most familiar with thinking of, such as that of gas
molecules in a container, this doesn’t make any sense. While there’s a lower bound on
kinetic energy and velocity of a gas molecule, there’s no upper bound: you can always have
the molecules move slightly faster. This means that increasing the energy available should
always increase the number of microstates available: there are always more higher-energy
states that molecules can reach only when the energy of the system increases. That said,
as the number of states accessible increases compared to the number of molecules, adding
energy has a smaller effect on the number of states. So, as we increase the energy of the
system, T goes from 0 to ∞ and β goes from ∞ to 0.

So, the temperature of canister of gas molecules can never have a negative temperature.
However, one can imagine a system that would. Imagine a system of molecules that can
have only two possible states. For example, a row of N bar magnets on an axis sitting in a
strong external magnetic field. If a magnet is aligned with the field, it has an energy of 0; if
it is aligned against the field it has an energy of E.

Clearly, in the lowest energy macrostate, this system has only one possible microstate—all
magnets aligned with the field—and so an entropy of zero, which will increase if you increase
the energy so that a magnet can be aligned against the field. If we continue to increase the
energy, the entropy also goes up as more magnets are aligned against the field.

However, when we reach the point where N/2 magnets are aligned with the field, we’ve
reached a point of maximum entropy. Adding an energy of E to the system will cause another
magnet to be aligned against the field, which will result in a situation that, entropically
speaking, is identical to when one less than N/2 magnets was aligned with the field. Adding
more energy will decrease the entropy until we reach an energy of NE, at which point all
magnets are aligned with the field and entropy is again zero.

So, in this system, as we increase the energy, β ranges from∞ to 0 to −∞ and T ranges from
0 to ∞, jumps to −∞, and then ranges back to approach 0 from the negative side.

As this suggests, negative temperatures are in fact hotter than positive temperatures. Not
only do they involve higher energies, but since the system’s entropy decreases when its
energy increases, the overall entropy of the universe will always increase—and so the process
will be spontaneous—when energy flows from a negative temperature system to a positive
temperature system.
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7 Can you make a negative temperature in real life?

You’ve just been bombarded with a lot of math proving that the statistical mechanics defini-
tion of temperature allows for negative values from time to time. However, since statistical
mechanics is physics, it’s not enough for us to show that the math allows something. We
should want to understand a physical system where it could actually occur.

It isn’t automatically necessary that one exist. For example, “tachyons”—particles that can
only travel faster than light—are a valid solution to Einstein’s General Relativity equations.
However, there is no evidence that they actually exist in our universe. And, as we’ve al-
ready noted, the model of temperature that’s most familiar to us—the one used in the ideal
gas model—doesn’t allow negative temperatures because there is no maximum energy for
particles.

Besides the existence of a maximum energy level, there is another practical constraint on
negative-temperature systems. They must not easily exchange energy with systems around
them—including the mechanical and kinetic energy of particles—that are at positive temper-
atures. If they can exchange energy with these systems easily then, since they are “hotter”
than positive temperature systems, they’ll rapidly lose energy to the positive-temperature
systems until they reach equilibrium at the same temperature.

It turns out that there are several sorts of physical systems that meet these requirements.
One classic example of this is nuclear magnetic resonance spectroscopy, also called NMR or
MRI. An NMR system studies chemical compounds by manipulating the magnetic moments
of atomic nuclei. Due to a quantum mechanical property called “spin”, all nuclei of a
particular isotope will act as magnets with a particular strength. However, since different
atoms in a molecule have different electron densities around them, you can learn about the
structure of a molecule from the behavior of these magnets in a large external field.

An NMR spectrometer consists of a large magnet that surrounds the sample with a strong
and uniform magnetic field and a smaller magnet that is used to produce pulsed magnetic
fields to manipulate the behavior of the nuclear magnets. The strong external field causes
the nuclear magnets to align either with or against it, where the energy is lowest when they
are aligned with the field and highest when they are aligned with it. This produces a system
with a maximum as well as a minimum total energy.

Furthermore, since there is weak coupling between the alignments of the nuclear magnets and
the physical arrangement of the molecules, there is very limited energy exchange between
these two systems and it takes a relatively long time for the temperature of the nuclear
magnet alignments to come into thermal equilibrium with the temperature of the molecules
in the sample. That means that if the pulsed magnet is used to push the nuclear magnets into
a state where they’re all aligned against the external field—which is a state with a negative
temperature—they’ll stay there for an extended period. In fact, it’s possible to prepare two
sets of nuclei with different magnet-alignment temperatures and bring them into contact so
that one can observe them coming into thermal equilibrium with each other.
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